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We calculate the real-time-correlation function of the Sherrington-Kirkpatrick spin-glass model in a trans-
verse field. Using a careful analysis of the perturbative expansion of the functional-integral representation, we
derive the asymptotic form of the correlation function. In contrast to the previous works, we find for large
transverse field a power-law decay of the correlation with time t as t−3/2 at zero temperature and t−2 at infinite
temperature. At the small field region, we also find a significant change in the correlation which comes from
the structural difference between two paramagnetic phases.
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I. INTRODUCTION

Among disordered systems, spin glasses1 are of great in-
terest and have been investigated over decades because of
the simplicity of the models, the rich resulting properties,
and a large amount of applications to a variety of problems
such as neural networks and information processing.2 The
Sherrington-Kirkpatrick �SK� model3 is one of the objectives
which has been intensively investigated and is also known as
the most successful example which yields a large number of
notable consequences by mean-field approach.

Quantum random magnets are also the objectives of chal-
lenge and of significance due to their relevance to the phys-
ics of real disordered magnetic compounds at low tempera-
ture. However there is an obstacle. Combination of
randomness and quantum fluctuation makes the analytical
approach complicated. Physically it is expected that spin-
glass state may be disturbed by quantum fluctuations at low
temperature and the system exhibits quantum phase transi-
tions, which was discussed in several former works.4–6

In this paper we single out the SK model in a transverse
field among a variety of quantum random magnet models
because this is the simplest quantum model exhibiting the
spin-glass phase transition and is believed to have direct re-
lationship with the physics of a real disordered compound
LiHoxY1−xF4. We concentrate on clarifying the role of the
quantum fluctuations for spin-glass systems similar to former
works. We use the path-integral formalism for dealing with
the quantum fluctuation. The effect of quantum fluctuation
can be incorporated as �imaginary� time-dependent order pa-
rameters. In Ref. 7, one of the authors proposed a method for
treating such fluctuation effect, where the time dependence
of the order parameters is integrated out for deriving a renor-
malized effective free energy expressed in terms of classi-
cally defined time-independent order parameters. This ap-
proach is sufficient for extracting static properties of the
system, e.g., the phase diagram or time-independent quanti-
ties, which can be assessed by the resulting effective free
energy. However in this paper we look closely at the time
dependence of the order parameter to investigate the dynami-
cal properties of the system. Therefore we resort to another
approach to assess time-dependent quantities.

We analyze the local dynamical correlation function at an
arbitrary temperature T=1 /�, which is defined as

��t� = � 1

Z
Tr e−�ĤeiĤt�i

ze−iĤt�i
z� , �1�

where �i
z is the z component Pauli-spin operator on site i and

Z=Tr exp�−�Ĥ� is the partition function with a Hamiltonian

Ĥ. In the analysis of quantum systems, the calculation of the
dynamical correlation functions is one of the main topics and
a variety of analytical techniques have been developed for
it.6,8 As stated above, we consider the SK model in a trans-
verse field �,

Ĥ = −
1

2 �
i,j=1

N

Jij�i
z� j

z − ��
i=1

N

�i
x, �2�

where the averaging of the spin coupling Jij, denoted by the
square brackets in Eq. �1�, is taken with the Gaussian distri-
bution.

With regard to the behavior of dynamical correlation
function there are many preceding analytical9–12 and
numerical13,14 works, where Eq. �1� with imaginary time
t=−i� is analyzed. Their analytical results show that the cor-
relation decays asymptotically as power law of �−2 at the
zero-temperature critical point. Furthermore the authors of
Refs. 11 and 12 pointed out the relevance of �−2 decay to the
same behavior of time-correlation function in the single-
impurity Kondo model15 by making use of the mapping be-
tween two models, which seems to enforce the validity of
their result. However, the numerical calculation in Ref. 13
indicates a somewhat smaller value for the power-law index
and some argument is required for the discrepancy. All of the
former analytical results are based on perturbative expansion,
and in this paper we reexamine this calculation by using a
careful analysis of the expansion. We arrive at a different
conclusion for the value of the power index, which stems
from how to deal with multipoint correlation function ap-
pearing in the form of expansion.
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The paper is organized as follows. In Sec. II, we calculate
the imaginary-time-correlation function at zero temperature
by using the perturbative expansion. By referring to the dia-
grammatic expansion method utilized for other quantum sys-
tems, we calculate the asymptotic form of the correlation
function and make the comparison of it with the known re-
sults. In addition the result is confirmed by the numerical
calculation. In Sec. III we move on to the correlation at finite
temperature. We investigate it numerically and give some
considerations to the result, which suggest different
asymptotic behaviors of the correlation at high-temperature
region from the case of zero temperature. Section IV is de-
voted to conclusions.

II. CORRELATIONS AT ZERO TEMPERATURE

A. Imaginary-time formalism

The real-time correlation �Eq. �1�� is obtained by the ana-
lytic continuation of the imaginary-time-correlation function,

���� = � 1

Z
Tr e−��−��Ĥ�i

ze−�Ĥ�i
z� . �3�

The time-independent static part of ����, �=�0
�d����� /�,

was studied in detail in Ref. 7 as a measure of quantum
fluctuations. In order to deal with quantum operators analyti-
cally, we use the imaginary-time path-integral representation.
Following the standard technique we introduce replica to
perform the ensemble average. The correlation function is
expressed with the path integral of normalized vector,

���� = lim
n→0
�Tr exp	− ��

�=1

n

Ĥ���
�zi
�1�����zi

�1��0�� �4�

= lim
n→0
�� Dsszi

�1����szi
�1��0�exp	�

�=1

n �
0

�

d���i��s��������

− H�s��������
� , �5�

where the superscript � is the replica index running from 1 to
n, and the limit n→0 is taken afterward. s is the unit vector
on the Bloch sphere and � is the Berry phase term. Then we
put the Hamiltonian of the transverse SK model �Eq. �2��
into the above formula and take the Gaussian average with
respect to the interaction Jij. After performing the Hubbard-
Stratonovich transformation, we have the path integral form
of one-body Hamiltonian,

���� =�sz
�1����sz

�1��0�exp� J2

2 �
�=1

n �
0

�

d�1

	�
0

�

d�2sz
�����1����1 − �2�sz

�����2���
�

, �6�

where the angular bracket denotes the path integral over
s������ as

�¯�� = lim
n→0
� Ds�¯�exp	�

�=1

n �
0

�

d���i��s��������

+ �sx
�������
 . �7�

The Hubbard-Stratonovich field ���1−�2���sz
�����1�sz

�����2��
is nothing but the time-correlation function �Eq. �3�� and is
taken to be free from the replica index. Here we neglect the
time correlation between different replicas, or in other
words time-dependent spin-glass parameter q�����1 ,�2�
��sz

�����1�sz
������2�� ������ is taken to be zero, which

means we are in paramagnetic phase. Our goal is to solve
this self-consistent equation for ����.

B. Self-consistent equation in linear order

We expand Eq. �6� as a power series of J2 in order to
perform the spin integration afterward. Up to the first order,
we find the self-consistent linear equation for ����,

���� = D���� +
J2

2
�

0

�

d�1�
0

�

d�2�D���,�1,�2,0�

− D����D����1 − �2�����1 − �2� , �8�

where the two-point correlation function D����1−�2��
= �sz

�1���1�sz
�1���2��� is given by

D����1 − �2�� =
e��−2���1−�2� + e−��+2���1−�2�

e�� + e−�� . �9�

We can easily find how two sz’s contribute to this propagator
by drawing pictorial spin-flip representation as in Fig. 1. The
spin pointing along the x direction is flipped two times by the
spin operator �z while propagating from �=0 to �=�. It is
necessary to go back to the original state due to the boundary
condition s�0�=s���.7 In the same way, for the four-point
function D���1 ,�2 ,�3 ,�4�= �sz

�1���1�sz
�1���2�sz

�1���3�sz
�1���4���,

the spin is flipped four times and we obtain

D���1,�2,�3,�4� = D���1 − �2 + �3 − �4� , �10�

where we assume �1
�2
�3
�4. As we see from Fig. 1, it
is important to take notice of the time ordering of the spin
operators.

The integral equation �8� can be solved by the differential
equation for ����,

FIG. 1. The pictorial representation of the two-point correlation
function D���2−�1�= �sz��2�sz��1��� with �2
�1.
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��
4���� − 8�2��

2���� + 16��4 − �2J2����� = 0, �11�

which is obtained by taking derivatives of Eq. �8� several
times and constructing the closed-form equation in terms of
����. With the boundary condition it can be solved as

���� =
1

2
�D�+

��� + D�−
���� , �12�

where ��=��2��J. At the zero-temperature limit, this
function goes to

���� →
1

2
�e−2�+� + e−2�−�� , �13�

where we assume ��� /2 in taking the limit �→. This
result shows that, due to disorder, the energy level splits into
two as �→��2��J. Proceeding further to the higher order
correlations, we expect energy levels split into many and
finally form a broad distribution, as we see in the following.

However, we must note that this interpretation is valid
only when �
J. Solution �12� changes its behavior in the
case of smaller transverse fields, which is attributed to the
phase transition between the paramagnetic and the spin-glass
phases.9 When ��J, the time-independent part �
=�0

�d����� /� is nonzero even at zero temperature and non-
perturbative analysis is required for the zero mode.7 This
sharp change in behavior could be an artifact of the pertur-
bative expansion. Although this change survives even if we
take the higher-order correlations into account as we show in
the following, it is not clear whether it corresponds to the
phase-transition point or not. For example, in the random
energy model16 the corresponding phase transition is of first
order and it is not possible to determine the transition point
from perturbative calculation �see Sec. III C for detailed cal-
culations�. In the present analytical calculation, we assume
that � is large enough such that the zero mode gives no
contribution. Then the correlation asymptotically decays to
zero in time and the perturbative expansion is justified. The
behavior at small � is analyzed numerically in Sec. II E.

C. Asymptotic behavior at zero temperature

We take higher-order correlations into account in the fol-
lowing. In general ���� including all of such corrections is
not tractable, but in the case of the zero-temperature limit the
evaluation turns out to be considerably simpler. The integral
in Eq. �8� consists of contributions from �i� �1,2��, �ii�
�1,2
�, and �iii� �1����2 or �2����1. As we found
above, the first-order result �Eq. �13�� is short range and de-
cays exponentially with respect to �. Then we expect that the
asymptotic form of ���� is dominated by contributions from
�i� and �ii� since the constraint in �iii�, �1��2��, is harder
than that in �i� and �ii�, �1��2, in performing double integral,
which makes the contribution from �iii� negligible. At the
limit T=0, the contribution from �i� is written as

J2�
0

�

d�1�
0

�1

d�2�g�� − �1����1 − �2�g��2�

− g�� − �2����1 − �2�g��1�� , �14�

where g���=exp�−2���. Similarly the contribution from �ii�
is given by

J2�
�

�

d�2�
�2

�

d�1�g�� − �1����1 − �2�g��2 − ��

− g�� − �2����1 − �2�g��1 − ��� . �15�

Using the relation ����=���−��, we find that Eq. �15� is
given by Eq. �14� with the replacement � by �−�. Compar-
ing each term in above two equations we arrive at the con-
clusion that the main contribution comes from the first term
in Eq. �14�. We have an approximated form now,

���� � g��� + J2�
0

�

d�1�
0

�1

d�2g�� − �1����1 − �2�g��2� .

�16�

This equation is solved as

���� =
1

2
�e−2��+J/2�� + e−2��−J/2��� , �17�

which is a good approximation for Eq. �13� when ��J.
Higher-order contributions can be incorporated in the

same way. We find

� = g + J2g � � � g + J4g � � � g � � � g + ¯

=
1

1 − J2g � �
� g , �18�

where the asterisk � represents a time integral in convolution
form,

f � g��� = �
0

�

d��f�� − ���g���� . �19�

This function product satisfies commutativity f �g=g� f and
can be treated similar to ordinary product. Solving Eq. �18�
we obtain

� =
1

2J2g
�1 − �1 − 4J2g2� = �

n=0


�2n − 1� ! !

�2n + 2� ! !
22n+1J2ng2n+1,

�20�

where we omitted the asterisk �. Using the nth convolution
product of g given by

gn��� =
�n−1

�n − 1�!
e−2��, �21�

we obtain the result for the imaginary correlation function at
zero temperature,
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���� =
1

J�
I1�2J��e−2��, �22�

where I1 is the modified Bessel function of order 1. This
function has an asymptotic form of exponential decay,

���� �
1

�4��J��3/2e−2��−J��, �23�

at �
J, which changes to a power decay �−3/2 at �=J.
The analytic continuation to the real time is obtained as

��t� =
1

Jt
J1�2Jt�e−2i�t, �24�

where J1 is the Bessel function of order 1. This shows t−3/2

decay for arbitrary � as

��t� �
1

���Jt�3/2e−2i�t cos	2Jt −
3�

4

 . �25�

In the Fourier-transformed space, the spectrum forms a semi-
circle with the center �=2� as

���� =
�4J2 − �� − 2��2

J2 ��2J − �� − 2��� . �26�

It is worth stressing here that the real-time correlation always
shows a power-law asymptotic decay �Eq. �25��, while the
imaginary-time correlation �Eq. �23�� exhibits a power-law
behavior only at �=J. However, as we explained in Sec.
II B, we must be careful about identifying the point �=J as a
critical one. Actually, it is known by preceding works7,9,14

that the value of � at the critical point should be a larger one
��1.5J. In order to observe the power-law decay numeri-
cally in imaginary-time framework, we must identify the
critical point, which turns out to be a troublesome task.13 On
the other hand, in the real-time framework the power-law
behavior can be observed not only in the critical point but
also in a broad range of large � where our perturbative cal-
culation is justified. Therefore, we can check the universal
power-law index of 3/2 in the paramagnetic phase at zero
temperature by observing the semicircle form of the spec-
trum.

D. Comparison with previous results

Our result shows that the correlation decays in power as
t−3/2. On the other hand, the authors of Ref. 9 have the con-
clusion of t−2 decay via a rather general argument. Their
argument is based on a perturbative expansion as we did in
the present paper. Actually we obtained the same form �Eq.
�20�� as theirs, though there is a minor but crucial difference.
The difference originates from the evaluation of the n-point
correlations with n�4. For example, let us recall that we
have the four-point correlation D���1 ,�2 ,�3 ,�4�
= �sz

�1���1�sz
�1���2�sz

�1���3�sz
�1���4��� obtained in Eq. �10�. In the

previous works,9–12 the Wick theorem,

D���1,�2,�3,�4� → D����1 − �2��D����3 − �4��

+ D����1 − �3��D����2 − �4��

+ D����1 − �4��D����2 − �3�� , �27�

was applied to the evaluation of this four-point correlation.
However, this expression is not compatible with the exact
one �Eq. �10��. It is evident that the integration of the spin
variable is not a Gaussian one, and accordingly Eq. �27� is
not justified. In order to show that the use of the Wick theo-
rem leads to a wrong result, we examine the self-consistent
equation in linear order �Eq. �8��. In our approach we have
the solution as Eq. �12�, and we should recall that the form of
four-point correlation in Eq. �10� was used there. On the
other hand, let us suppose that factorization �27� by two-
point correlation is correct. Then we can perform the Fourier
transformation of ���� to find

���n = 2�n/�� = D���n� + �2J2D�
2��n����n�

=
D���n�

1 − �2J2D�
2��n�

, �28�

where n is an integer and

D���n� =
tanh ��

��

����2

����2 + ��n�2 . �29�

Performing the Fourier transformation again for going back
to the imaginary-time representation, we obtain

���� =
1

2� � tanh ��

�̃+ tanh ��̃+

D�̃+
��� +

� tanh ��

�̃− tanh ��̃−

D�̃−
���� ,

�30�

where �̃�=��2��J tanh ��. This does not coincide with
the exact result �Eq. �12��, which indicates that factorization
�27� is not valid. In addition, Eq. �30� does not satisfy the
normalization condition ���=0�=1. The authors of Refs.
9–12 introduced a Lagrange multiplier to cure this defect.
However, we can show that the correct result is not repro-
duced even if the Lagrange multiplier is introduced. Conse-
quently we conclude that the factorization is not a correct
procedure in evaluating the time-correlation function.

Suppose again that we can apply the Wick theorem to the
analysis here, then the integration range of the convolution in
Eq. �19� is bounded by �, not by �, which means that the
time ordering is not respected. Hence we may consider Fou-
rier transformation of Eq. �20� as

���n� =
1

2�2J2D���n�
�1 − �1 − 4�2J2D�

2��n�� , �31�

which was found in Ref. 12. This has the same form as Eq.
�20�, but the time ordering is not treated properly and a dif-
ferent result from Eq. �26� is obtained.

The imaginary-time correlation was investigated numeri-
cally in Ref. 13 using the Monte Carlo method. The
asymptotic form was obtained as t−� with ��1.2, which was
considerably smaller than the previously predicted value �
=2. Although the authors of Ref. 13 interpreted this value as
the one which is close to �=1, we consider this supports our
result �=1.5, rather than the ones by former works.
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E. Numerical calculation

In order to check the analytical result at T=0 we carry out
numerical calculation. The method of numerical analysis is
based on the spectral decomposition of the correlation func-
tion ����=�dt��t�exp�i�t� as

���� = ��
nm

e−�En��� − �Em − En����n��i
z�m��2

�
n

e−�En � , �32�

where n and m denote energy eigenstates. This expression
means that components in the summations contribute to ����
only when � is equal to a difference of energies between two
levels. At T=0, it is clear that only non-negative excitations
are allowed and ���� forms a spectrum only in the range of
positive � as we showed above.

The quantity ���� is evaluated numerically by the diago-
nalization of the Hamiltonian. The number of sites is taken to
be N=10, and the averaging is performed over more than
10 000 samples. The zero-temperature results are shown in
Fig. 2 and are compared with the analytical result �Eq. �26��.
When the transverse field � is not so small, we find a good
agreement despite the fact that Eq. �26� is the Fourier trans-
formation of the asymptotic form �Eq. �24��. We also note
that a similar form of ���� has already been obtained in
larger system sizes in Ref. 14, which supports our analytical
result as well.

We also show the correlation in real-time space in Fig. 3
by using numerical Fourier transformation of ����. The
power index is estimated by linear fitting of ln�Re ��t�� and
ln�Im ��t�� peaks versus ln t. Due to the finite-size effect, the
plot in Fig. 2 shows small oscillations and smooth tails,
which leads to large deviations at large t in Fig. 3. For this
reason, the fitting is carried out within the region t�5. The
power index is roughly estimated as 1.6, which is consistent
with the analytical result, 1.5. We expect the small deviation
from the analytical one also arises from the finite-size effect
in small t region, which is relatively smaller than in large t
region.

As in Fig. 2, when the transverse field � is decreased the
spectral band around �=2� approaches the origin. We also
observe a small sharp peak in the band around a certain value

of � with ��2�. This peak grows up and approaches the
origin with increasing system size N. We expect this peak
finally reaches the origin in infinite system size limit. Since
the spin-glass order parameter q is equal to the static part of
���� at T=0,7 ���=0�
0 implies the spin-glass phase.
Therefore we can interpret the emergence of the peak as a
sign of the phase transition from the paramagnetic phase to
the spin-glass phase.9,14 Although our system size N=10 is
not large enough to find the transition point, the transition
seems to happen at a value around ��1.5J, which is con-
sistent with the previous analyses. Since the main aim of the
present paper is not to determine the precise value of the
transition point, we defer the detailed analysis to a future
work.

III. CORRELATIONS AT FINITE TEMPERATURE

A. Numerical results

Next we move on to the finite temperature case. When the
temperature is nonzero, the negative excitations are allowed
and we expect double peaks around �= �2�. These peaks
finally become symmetric in the limit of T→, which can be
understood from the spectral decomposition �Eq. �32��. The
behavior at finite temperature is difficult to analyze since
many energy levels contribute to the correlation function. In
the imaginary-time path-integral formalism, the length of the
integral path shrinks as the temperature is increased and the
assumption of asymptotic decay in � becomes invalid. For
these reasons we do not apply imaginary-time path-integral
formalism to finite temperature case.

We first observe the shape of ���� by the numerical
method instead. The results at T=2.0J and T= are shown in
Figs. 4 and 5, respectively. As we expect, the double peaks
are formed at finite temperature. When � is not so small, the
result at T= can be well fitted by the function

���� =
�

2J̄
�e−��−2��/J̄ + e−��+2��/J̄� , �33�

with a parameter J̄. The result of fitting is also shown in Fig.

5. The parameter is taken as J̄=0.76J, irrespective of the

FIG. 2. The correlation function ���� at T=0 for N=10. The
solid line represents Eq. �26� with � /J=3.

FIG. 3. ��t� at T=0 and � /J=3 obtained from the Fourier trans-
formation of the data in Fig. 2. The points denote numerical data
and the lines are analytical results. The solid lines are envelope
curves ��−1/2�Jt�−3/2.
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value of �. This form of fitting function is interpreted in the
following.

B. Behavior at infinite temperature

Let us consider a perturbative analysis of the spectral rep-
resentation at T=,

���� = � 1

2N�
nm

��� − �Em − En����n��i
z�m��2� . �34�

In the limit of J=0, the eigenstates of the unperturbed Hamil-

tonian Ĥ0=−��i=1
N �i

x are expressed by the eigenstates of �i
x.

When the numbers of the spins pointing in the negative and
the positive x directions are k and N−k, respectively, the
unperturbed eigenenergy is given by Ek

�0�=−�N−2k�� and
the degree of degeneracy is NCk=N ! /k ! �N−k�!. The opera-
tor �i

z flips the ith site spin and changes the number k to
k�1, which determines the selection rule between the state n
and m in Eq. �34�. In the first order of perturbation theory,
the Hamiltonian is diagonalized in a subspace characterized
by the quantum number k. With this quantum number we
obtain the approximate expression,

���� = � 1

2N �
k=0

N−1

�
�=1

NCk

�
�=1

NCk+1

���� − 2� − �Ek+1,�
�1� − Ek,�

�1� ��

+ ��� + 2� + �Ek+1,�
�1� − Ek,�

�1� ����k + 1,���i
z�k,���2� ,

�35�

where � and � denote the indices of degeneracy and the
ranges depend on k. Ek,�

�1� are eigenvalues at the first order and
may be expressed by linear combinations of Jij as Ek,�

�1�

=�ijmij
�k,��Jij. Another form of Ek,�

�1� as a function of Jij will
not change the conclusion here. The averaging of Eq. �35�
with respect to Jij yields a Gaussian factor as

��	� − 2� − �
ij

mijJij
� � exp	−
N�� − 2��2

2J2�
ij

mij
2 
 . �36�

The contribution of Eq. �35� mainly comes from the sector
with k�N /2, which is understood in conjunction with the
factor 1 /2N in Eq. �35�. For example, in the case of k=0 the
number of the elements in the �� sum is equal to N and is
negligible at N→ due to the multiplication by the factor
1 /2N, whereas it is not suppressed when k�N /2.

Although it is hard to perform explicitly the perturbative
calculation even at the first order, we easily see that the result
is expressed by a linear combination of Gaussian functions
as

���� = 2�� d�P����exp	−
�� − 2��2

2�2 

+ exp	−

�� + 2��2

2�2 
� , �37�

where P��� is the distribution function of the variance �.
From this expression, we find that result �33� can be repro-
duced by assuming the Gaussian distribution P���
�exp�−�2 /2J̄2�. The Fourier transformation of Eq. �33�
gives

��t� =
cos�2�t�

1 + J̄2t2
. �38�

This shows that the correlation asymptotically decays as t−2.
We must note that this index is obtained by a different
mechanism as Ref. 9 where the same value of the index is
concluded at zero temperature.

C. Classical and quantum paramagnetic phase

At finite temperature, the spin-glass phase is suppressed
in increasing T and disappears at T=J.1,2 The second-order
phase-transition curve, namely, the spin-glass phase bound-
ary, runs from T=0, ��1.5J to T=J, �=0 on T-� plane. On
the other hand, in Sec. II we saw the change in the behavior
of ��t� at zero temperature when � is varied, and this change
is expected to be persistent up to higher-temperature region
than the spin-glass phase boundary. We can attribute this

FIG. 4. ���� at T=2.0J for N=10.

FIG. 5. ���� at T= for N=10. The result is symmetric in � as
��−��=����. The solid line is the result of the fitting using the

function in Eq. �33� with J̄=0.76J.
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change to the one in moving across the boundary between
the quantum paramagnetic �QP� and the classical paramag-
netic �CP� phases, rather than between the spin-glass phase
and one of the paramagnetic phases.

The existence of the phase transition between the CP and
the QP phases has already been found in the p-body interac-
tion spin-glass model in a transverse field defined by the
Hamiltonian

Ĥ = − �
i1�i2�¯�ip

Ji1i2. . .ip
�i1

z �i2
z . . . �ip

z − ��
i

�i
x. �39�

The interaction Ji1i2¯ip
is random and the average is taken

with Gaussian probability distribution. At p→ this model
is known as the random energy model and exhibits first-order
phase transition between the CP and the QP phases.16 The
imaginary-time-correlation function at the QP phase can be
calculated from the self-consistent equation in terms of ����,

���� =�sz
�1����sz

�1��0�exp	 pJ2

4 �
�=1

n �
0

�

d�1�
0

�

d�2

	sz
�����1��p−1��1 − �2�sz

�����2�
�
�

. �40�

The factor �p−1 goes to zero at p→ unless �=1. From this,
it is clear the zeroth-order calculation becomes exact,

���� = D���� =
e��−2�� + e−��+2��

e�� + e−�� . �41�

The phase-transition point cannot be determined from this
equation for the QP phase but can be determined by the static
part of the correlation function for the CP phase. Considering
the condition of the vanishing static part, we obtain a discon-
tinuous change from ����=1 to Eq. �41�, which also tells us
the boundary between the CP and the QP phases reaches T
=. When p takes a large but finite value, the phase-
transition line is terminated at a certain finite temperature
value and the transition between the CP and the QP phases
turns to crossover.17

Our numerical analysis for the SK �p=2� model shows
that the semicircle form changes to a broader one at finite
temperature. The long tail of the spectrum reaches the origin
�=0, just as Eq. �33�. We also observe that a sharp peak
around the origin, which was considered a precursor of the
spin-glass transition for finite systems, is suppressed at finite
temperature. These observations imply that the spectrum
change at finite temperature indicates a crossover between
the CP and the QP phases. This picture is supported by the
analysis in Ref. 7 where a smooth change in the static part of

the correlation function was obtained at T
0. However, it is
known in a Langevin dynamics model of p-body interaction
spin glass18 that the behavior at p
2 should be distinguished
from the one with p=2. Our numerical calculation is carried
out for rather small systems, and it is fair to say that our
analysis is not conclusive and further studies are required to
determine the properties of the finite temperature phase dia-
gram.

IV. CONCLUSIONS

In conclusion, we have calculated the dynamical correla-
tion function �Eq. �1�� in the transverse SK model �Eq. �2��.
Our main results are Eqs. �24� and �26� at T=0, and Eqs. �33�
and �38� at T=. For large transverse field, the correlation
function asymptotically decays in time t as t−3/2 at T=0 and
t−2 at T=. The results of our analysis are different from
those of previous works at T=0.9–12 In the present spin sys-
tem, it is the crucial point in the analysis that the simple
Wick theorem cannot be applied to the multicorrelations of
the spin operators. It was shown in Ref. 19 that the factor-
ization for Gaussian variables is modified in the case of spin
operators and a sign factor is introduced to respect time or-
dering of operators. We showed that the correct procedure
leads to a different form of real-time correlation from the
known one.

In the present paper, we have analyzed the infinite range
model to focus on the time dependence of the correlation
function. It is important to study how the present result is
changed at finite-dimensional models with finite range inter-
actions. Spatial correlation can be related to time correlation;
therefore the result of such study will be useful. With regard
to critical exponent, there is an argument that the dynamic
critical exponent z is related to the power index of the time-
correlation function discussed in the present paper.13 In ad-
dition, in low-dimensional systems it is inferred from the
general considerations6 that correlation function is signifi-
cantly affected by Griffiths-McCoy singularities.20

Application to other random quantum systems is also an
interesting future work. For the random quantum Heisenberg
model, the correlation function in Fourier-transformed space,
����, was numerically analyzed in Refs. 14 and 21. It is
interesting to analyze the correlation in real-time space by
using the analytical method developed here, and this will be
our future work.
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